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Abstract
In this paper we consider embedded eigenvalues of a Schrödinger Hamiltonian
in a waveguide induced by a symmetric perturbation. It is shown that these
eigenvalues become unstable and turn into resonances after twisting of the
waveguide. The perturbative expansion of the resonance width is calculated
for weakly twisted waveguides and the influence of the twist on resonances in
a concrete model is discussed in detail.

PACS numbers: 03.65.−w, 03.65.Ge, 73.63.−b
Mathematics Subject Classification: 35P05, 81Q10

1. Introduction

Quantum and electromagnetic waveguides have been studied since many decades; see
[18, 22, 23, 27] and also [24] where the classical and the quantum pictures are compared.
In this framework the spectral analysis of differential operators in tubular domains has become
a research field of a certain interest [6, 15, 16]. Moreover, with the introduction of nano-
devices, such as nanotubes, new open problems in quantum transmission for such structures
appeared [7].

We consider here a waveguide type domain � = R × ω (see figure 1, on the left), where
the cross section ω of the waveguide is an open bounded and connected subset of R

2. We
impose Dirichlet boundary conditions at the boundary of �. The spectrum of the free operator
−� in L2(�) is absolutely continuous and covers the half-line [E1,∞), where E1 is the
lowest eigenvalue of the Dirichlet Laplacian on ω. It is a well-known fact that this spectrum
is unstable against perturbations; indeed, a negative perturbation, vanishing at infinity, of −�

will induce at least one bound state below the threshold E1 and new embedded bound states
in the half-line [E1, +∞) (see, e.g., figure 2). The perturbation can be either of a potential
type or of a geometric type; see [5, 9, 16] and references there. Similar effects occur also in
two-dimensional strips [2, 4, 15]. These new bound states below the threshold E1 correspond
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Figure 1. On the left, a plot of the surface of a rectangular waveguide without twisting; on the
right, a plot of the surface of the twisted rectangular waveguide. The bold line represents the
boundary of ω.
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Figure 2. The discrete spectrum of HV
0 consists of finitely many simple eigenvalues below E1

(denoted by a full circle); the essential spectrum is given by the half-line [E1, +∞). Furthermore,
a non-empty set of simple eigenvalues (denoted by an empty circle) embedded in the half-line
[E1, +∞) occurs.

to the particles (electrons) which do not propagate along �, but remain localized in a bounded
region of �.

Recently it has been shown [14] that the presence of bound states in � can be, up to a
certain extent, suppressed by another geometrical perturbation: the so-called twisting which
is defined as follows. For a given x ∈ R and s := (y, z) ∈ ω, we define the mapping

fε : R × ω → R
3

by

fε(x, s) = (x, y cos(εα(x)) + z sin(εα(x)), z cos(εα(x)) − y sin(εα(x))), (1)

where ε > 0 is a real parameter and α : R → R is a differentiable function. Furthermore, we
introduce

�ε := fε(�).

Clearly, �ε is a tube which is twisted unless the function α is constant (in figure 1 we plot,
respectively, a rectangular tube without and with twisting). The result of [14] shows that if
the cross section ω is not rotationally symmetric and the tube � is twisted, even only locally,
then the bound states for the perturbed Hamiltonian −� + V do not appear for any negative
potential V (x), but only if V is strong enough. In other words, one could say that a twisting
of a tubular domain � improves the transport of charged particles in � in the sense that it
protects the particles to get trapped by weak perturbations. The repulsive effect of twisting
has been recently observed also in [17], where the absence of discrete eigenvalues in tubes
which are simultaneously mildly curved and mildly twisted. Moreover, in [3] the repulsive
effect of twisting is demonstrated for bounded tubes whose thickness goes to zero.
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Similar results were also obtained for two-dimensional waveguides with combined
boundary conditions or with a local magnetic field [13, 20]. However, the geometrical
perturbations of the waveguide generically induce also the existence of resonances, i.e.
metastable states with very long lifetimes (see [10–12]).

It is the aim of the present paper to describe the influence of twisting on the resonances in
the waveguides. More precisely, we study the situation in which the free Laplacian is perturbed
by an attractive potential V (x), which decays at infinity along the waveguide direction, where
x ∈ R represents the coordinate along the waveguide direction. The point spectrum of the
perturbed Hamiltonian −� + V (x) consists, in addition to the bound states below E1, of
infinitely many eigenvalues embedded in the continuum [E1,∞) (see figure 2). It was shown
in [10], for two-dimensional waveguides, that these embedded eigenvalues generically turn
into resonances in the presence of a constant magnetic field. Following the method of [10],
we show that this happens also when the magnetic field is replaced by the twisting, provided
the cross section ω is not rotationally symmetric (see theorem 1). For weak twisting we also
give the perturbative expansion of the corresponding resonance width.

In order to obtain a precise estimate on the imaginary part of the resonances and, in
particular, to prove that it is strictly negative we consider in section 5 a concrete model in
which the potential V approximates a one-dimensional point interaction. For such a model
we explicitly calculate the leading term of the imaginary part of a chosen resonance, see
proposition 1, and we prove that for suitable values of the parameters (see remark 9), the
imaginary part of the resonance is strictly negative.

2. Preliminaries

Throughout the paper we will denote by 〈·, ·〉H the scalar product in a Hilbert space H with the
convention 〈αu, v〉H = ᾱ〈u, v〉H for all α ∈ C and u, v ∈ H . For a real-valued measurable
bounded function V (x) on R we formally define the Hamiltonians

H̃ 0
ε = −� and H̃ V

ε = −� + V (x) in L2(�ε)

with Dirichlet boundary conditions at ∂�ε. The operator H̃ V
ε is associated with the closed

quadratic form

Q̃V
ε [ψ] :=

∫
�ε

[|∇ψ |2 + V (x)|ψ |2] dx ds, (2)

with the form domain D
(
Q̃V

ε

) = H1
0(�ε).

Given a test function ψ ∈ C∞
0 (�) it is useful to introduce the following shorthand:

∂τψ := y∂zψ − z∂yψ. (3)

As usual in such situations, in order to analyse the operator H̃ V
ε we pass from the twisted tube

�ε to the untwisted tube � by means of a simple substitution of variables. This gives

QV
ε [ψ] =

∫
�

(|∇sψ |2 + |∂xψ + εα̇(x)∂τψ |2 + V (x)|ψ |2) dx ds,

with the form domain D
(
QV

ε

) = H1
0(�) and with the notation

∇sψ := (∂yψ, ∂zψ).

In other words, the operator HV
ε , associated with QV

ε and unitarily equivalent to H̃ V
ε , acts on

its domain in L2(�) in the weak sense as

HV
ε = −∂2

y − ∂2
z − [∂x + εα̇(x)∂τ ]2 + V (x) = HV

0 + UV
ε ,
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where

HV
0 = −∂2

x − ∂2
y − ∂2

z + V (x)

and

UV
ε = −[∂x + εα̇(x)∂τ ]2 + ∂2

x

= −2εα̇(x)∂x∂τ − εα̈(x)∂τ − ε2α̇2(x)∂2
τ .

Remark 1. The term UV
ε is a symmetric operator on L2(�) with Dirichlet boundary conditions

at ∂�.

In order to show that the embedded eigenvalues of HV
0 turn into the resonances once the

waveguide is twisted, we employ the method of the exterior complex scaling in combination
with the regular perturbation theory [8]. We start by locating the spectrum of the untwisted
model.

3. Spectrum of HV
0

We will suppose that V satisfies the following

Assumption A. The function V (x) is not identically equal to zero and∫
R

(1 + x2)|V (x)| dx < ∞ and
∫

R

V (x) dx � 0. (4)

It then follows from [25] (see, e.g. theorem XIII.110 in and its Notes) that the operator

h := −∂2
x + V (x) in L2(R)

possesses finitely many negative eigenvalues {µj }Nj=1, N � 1, each of multiplicity 1. We
denote by ϕj (x) the corresponding normalized eigenfunctions. The essential spectrum of h
covers the positive half-line [0,∞). On the other hand, it is well known that the operator −�ω

D ,
i.e. the Dirichlet Laplacian on ω, is positive definite and has purely discrete spectrum. Let
{En}∞n=1 be the non-decreasing sequence of its eigenvalues and let χn(s) denote the associated
normalized eigenfunctions. The set of such eigenfunctions is an orthonormal basis of L2(ω).
We denote by

� = {E = µj + En, j = 1, . . . , N, n � 1}
the set of eigenvalues of HV

0 with associated normalized eigenvectors

ψn,j (x, s) = ϕj (x)χn(s)

and

�+ = � ∩ [E1, +∞), �− = � ∩ (−∞, E1),

where �− is not empty since µj < 0 for any j . Then, by the standard arguments [25] the
spectrum of

HV
0 = −� + V (x), in L2(R × ω)

is given by σ
(
HV

0

) = σd

(
HV

0

) ∪ σess
(
HV

0

)
, where

σd

(
HV

0

) = �− and σess
(
HV

0

) = [E1,∞).

In addition, HV
0 possesses a point spectrum embedded into the continuum given by �+ (see

figure 2).
We expect that when ε becomes non-zero these embedded eigenvalues generically turn

into resonances, which are the main object of our study.

Remark 2. Since the operator HV
0 commutes with complex conjugation, its eigenfunctions

ψ can be assumed to be real-valued.
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E1 E2 E3

Figure 3. The discrete spectrum of HV
0 (θ) consists of a sequence of real and simple eigenvalues

(denoted by a circle); the essential spectrum is given by the half-lines En + e−2i Im θ
R

+.

4. Complex scaling

Henceforth, we will employ the method of exterior complex scaling to the operator HV
ε . In

order to do so, we will need some assumptions on the functions V and α:

Assumption B. V extends to an analytic function with respect to x in some sector

Mβ := {ζ ∈ C : |arg ζ | � β}, with β > 0.

Moreover, V is uniformly bounded in Mβ .

Assumption C. α extends to analytic function with respect to x in

Mβ = Mβ ∪ {ζ ∈ C : |Im ζ | � β}, with β > 0,

and α̇ is uniformly bounded in Mβ . In addition, α̇(x) > 0,∀x ∈ R.

Remark 3. Since α̇ is uniformly bounded in Mβ , from the Cauchy theorem it follows that α̈

is uniformly bounded in Mβ ′ for any 0 < β ′ < β.

In analogy with [10] we introduce the mapping Sθ , which acts as a complex dilation in the
longitudinal variable x:

(Sθψ)(x, s) = eθ/2ψ(eθx, s), θ ∈ C.

The transformed operator then takes the form

HV
ε (θ) = SθH

V
ε S−1

θ = HV
0 (θ) + UV

ε (θ),

where

HV
0 (θ) = SθH

V
0 S−1

θ = −e−2θ ∂2
x − ∂2

y − ∂2
z + V (eθx)

and

UV
ε (θ) = SθU

V
ε S−1

θ = −2ε e−θ α̇(eθx)∂x∂τ − ε e−θ α̈(eθx)∂τ − ε2α̇2(eθx)∂2
τ . (5)

Lemma 1. Let V satisfy assumptions A and B, then HV
0 (θ) is an analytic family of type A

with respect to θ . Furthermore, the spectrum of HV
0 (θ) has the form (see figure 3)

σ
(
HV

0 (θ)
) =

⋃
n

[En + e−2i Im θ
R

+]. (6)

More precisely, the essential spectrum of HV
0 (θ) consists of the sequence of the half-lines

En + e−2i Im θ
R

+, n = 1, 2, . . . , and the discrete spectrum of HV
0 (θ) consists of the set of

eigenvalues µj + En with associated eigenvectors

[ψn,j (θ)](x, s) = [Sθψn,j ](x, s) = eθ/2ϕj (e
θx)χn(s). (7)



8376 H Kovařı́k and A Sacchetti

Proof. It follows from assumption B that the family of operators HV
0 (θ) is analytic of type A

with respect to θ (see [19, chapter 7]). For what concerns its spectrum it is enough to remark
that the operator

h(θ) = SθhS−1
θ = −e−2θ ∂2

x + V (eθx)

in L2(R) has the spectrum given by

σ(h(θ)) = {µ1, . . . , µN } ∪ e−2i Im θ
R

+.

By the Ichinose’s lemma, see [25, Sec. XIII.10], we then obtain formula (6) for the spectrum
of the sum h(θ) − ∂2

y − ∂2
z . �

Lemma 2. Let V satisfy assumptions A and B and let α satisfy assumption C, then the
operator UV

ε (θ) is a relatively bounded perturbation of HV
0 (θ). Moreover, the family of

operators HV
ε (θ) is analytic of type A for all θ such that |θ | < Rε, where Rε → ∞ as ε → 0.

Proof. In order to prove the lemma we consider a test function ψ ∈ C∞
0 (�). Using the

assumptions on V we find out that there exists a positive constant c (here and below, c will
denote a positive constant whose value changes from line to line) such that∥∥HV

0 (θ)ψ
∥∥2 � c

(∥∥∂2
xψ

∥∥2
+

∥∥∂2
yψ

∥∥2
+

∥∥∂2
z ψ

∥∥2) − c‖ψ‖2.

From this inequality and using the fact that ω is bounded we arrive at∥∥∂2
τ ψ

∥∥2 � c
(∥∥∂2

z ψ
∥∥2

+
∥∥∂2

yψ
∥∥2

+ ‖∂zψ‖2 + ‖∂yψ‖2
)

� c
(∥∥∂2

z ψ
∥∥2

+
∥∥∂2

yψ
∥∥2

+ ‖ψ‖2)
� c

(∥∥HV
0 (θ)ψ

∥∥2
+ ‖ψ‖2

)
and

‖∂τψ‖2 � c(‖∂zψ‖2 + ‖∂yψ‖2) � c
(∥∥HV

0 (θ)ψ
∥∥2

+ ‖ψ‖2
)
. (8)

As for the mixed term in UV
ε (θ) we note that

‖∂x∂τψ‖2 = 〈∂x∂τψ, ∂x∂τψ〉L2(�) �
∥∥∂2

τ ψ
∥∥∥∥∂2

xψ
∥∥ � 1

2

[∥∥∂2
τ ψ

∥∥2
+

∥∥∂2
xψ

∥∥2]
. (9)

Collecting all these estimates we finally conclude that there exists a positive constant C,
depending on ω and V , such that∥∥UV

ε (θ)ψ
∥∥2 � C(ε + ε2)2

(∥∥HV
0 (θ)ψ

∥∥2
+ ‖ψ‖2

)
. (10)

To prove the second statement of the lemma we first notice that by assumption B we have
D

(
HV

0 (θ)
) = D

(
HV

0 (0)
)
. By assumption C and [19, section 7.2] it thus suffices to show that

both ∂x∂τ and ∂τ are relatively bounded with respect to HV
0 (θ). However, this follows from

(8) and (10). �

Lemma 2 tells us that the eigenvalues of HV
ε (θ) are analytic functions of θ . By a standard

argument [8], it turns out that they are in fact independent of θ . The non-real eigenvalues of
HV

ε (θ), for θ such that Im θ > 0, are identified with the resonances of HV
ε [8].

Remark 4. As a result of the previous proof it follows that UV
ε (θ) is a regular perturbation

of the operator HV
0 (θ). This enables us to apply the analytic perturbation theory to the

eigenvalues of the operator HV
0 (θ).

Theorem 1. Let E = En +µj ∈ �+ be a simple eigenvalue of HV
0 θ) where θ is a fixed complex

number such that Im θ > 0. For any ball B centred in E there exists ε� > 0, depending on E,
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such that for any ε with |ε| < ε�, there is an eigenvalue E(ε) of HV
ε (θ) belonging to B and

with the imaginary part given by

Im E(ε) = −ε2a + O(ε3) (11)

where a is a constant independent of ε and equal to

a =
∑
k�k�

|〈∂τχn, χk〉L2(ω)|2〈vj , Im r̂(E − Ek)vj 〉L2(R). (12)

Here

vj = (−2α̇∂x + α̈)ϕj , k� = max{k : Ek − E < 0}
and Im r̂ stands for the imaginary part of the reduced resolvent [19] of h = −∂2

x + V with
respect to the eigenvalue µj :

〈vj , Im r̂(E − Ek)vj 〉L2(R) = lim
ρ→0+

1

2i
[〈vj , r̂(E − (Ek + iρ))vj 〉L2(R)

−〈vj , r̂(E − (Ek − iρ))vj 〉L2(R)].

Proof. Let ψ(θ) = ψn,j (θ) be the associated normalized eigenvector (7) belonging to E,
where n and j are fixed. We apply the regular perturbation theory saying that for some fixed
r > 0 small enough and for any ε with modulus small enough, in the given ball Br(E) exists
only one eigenvalue E(ε) of HV

ε (θ) with an associated eigenvector

ψε(θ) = 1

2π i

∮
∂Br

[
ζ − HV

ε (θ)
]−1

ψ(θ) dζ.

Furthermore, the regular perturbation theory also yields that this eigenvalue is given by means
of the convergent perturbative series (see, e.g. [25, XII.6])

E(ε) =
〈
ψ̄(θ),HV

ε (θ)ψε(θ)
〉
L2(�)

〈ψ̄(θ), ψε(θ)〉L2(�)

=
∞∑

m=0

em(ε), em = O(εm)

where, as usual,

e0 = E and e1 =
〈
ψ̄(θ), UV

ε (θ)ψ(θ)
〉
L2(�)

〈ψ̄(θ), ψ(θ)〉L2(�)

=
〈
ψ,UV

ε ψ
〉
L2(�)

〈ψ,ψ〉L2(�)

are constant with respect to θ , and ψ is the real-valued vector (7) for θ = 0 (see remark 2).
These constants e0 and e1 are real-valued since UV

ε is a symmetric operator (see remark 1). If
we prove that Im e2 = −ε2a + O(ε3) for some a > 0 independent of ε then the stated result
follows. To this end, we recall that (see [10])

Im e2 = Im a2(1 + O(ε)),

where

a2 = − 1

2π i

∮
∂Br

〈
ψ̄(θ), UV

ε (θ)
[
ζ − HV

0 (θ)
]−1

UV
ε (θ)ψ(θ)

〉
L2(�)

dζ

ζ − E

= lim
ρ→0+

f (θ,E + iρ) = lim
ρ→0+

f (θ = 0, E + iρ)

and

f (θ, ζ ) = −〈
ψ̄(θ), UV

ε (θ)
[
ζ − HV

ε (θ)
]−1

UV
ε (θ)ψ(θ)

〉
L2(�)

+
∣∣〈ψ̄(θ), UV

ε (θ)ψ(θ)
〉
L2(�)

∣∣2
(ζ − E)−1.
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Hence

a2 = −〈
ψ,UV

ε R̂(E + i0)UV
ε ψ

〉
L2(�)

:= lim
ρ→0+

[−〈
ψ,UV

ε R̂(E + iρ)UV
ε ψ

〉
L2(�)

]
(13)

where R̂(ζ ) is the reduced resolvent of HV
0 with respect to the eigenvalue E (see [25, X.II.6]

and [19]). Recalling that ψ has the form

ψ(x, s) = ψn,j (x, s) = ϕj (x)χn(s)

for some n and j and that {χk(s)}∞k=1 is a basis of L2(ω), we obtain

UV
ε ψ(x, s) =

∞∑
k=1

dk(x)χk(s), where dk(x) = 〈
χk, U

V
ε ψ

〉
L2(ω)

.

Using the fact that UV
ε ψ ∈ L2(�), lemma 2 and the dominated convergence theorem, we

conclude that

a2 = −
∞∑

k=1

〈dk, r̂(E − Ek + i0)dk〉L2(R), (14)

where r̂(ζ ) is the reduced resolvent of h = −∂2
x + V with respect to µj . Concerning the

imaginary part of a2 we point out that only finitely many terms on the rhs of (14) have a
non-zero imaginary part. The latter follows from the fact that 〈dk, r̂(E − Ek + i0)dk〉 is real
for any k large enough, more precisely for any k > k�, where

k� = max{k : Ek − E < 0}.
From

dk(x) = εvj (x)〈∂τχn, χk〉L2(ω)[1 + O(ε)], vj = (−2α̇∂x + α̈)ϕj ,

we can thus conclude that

a2 = −ε2A[1 + O(ε)],

where

A = An,j =
∑
k�k�

|〈∂τχn, χk〉L2(ω)|2〈vj , r̂(E − Ek + i0)vj 〉L2(R)

is independent of ε. This implies (12) since

a = Im A =
∑
k�k�

|〈∂τχn, χk〉L2(ω)|2〈vj , Im r̂(E − Ek)vj 〉L2(R). �

Remark 5. Note that if ω is rotationally symmetric, then a = 0. Indeed, since χn is
rotationally symmetric whenever En is simple, this follows from (12).

Remark 6. We point out that Im r(ζ ) is a symmetric and positive operator for ζ real (see,
e.g., [10]). We can thus generically expect that for any Ẽ > E1 fixed there exists ε� > 0
small enough such that HV

ε (θ) does not have a discrete spectrum in the interval [E1, Ẽ] for
any 0 < |ε| � ε�; more precisely, for any δ > 0 the set

σd

(
HV

ε (θ)
) ∩ {[E1, Ẽ] × i[−δ, +δ]}

is empty or it consists of finitely many points with the imaginary part strictly negative (see
figure 4). As a result, it follows that the embedded eigenvalue E ∈ �+ of the untwisted model
turns into a resonance when an appropriate twisting is applied.

Concerning the assumption on the multiplicity of E we note that it is closely related to
the multiplicity of En, the eigenvalues of −�ω

D . In general, and especially for cross-sections
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E1 E2 E3

Figure 4. The discrete spectrum of HV
ε (θ), for ε �= 0 small enough, consists of two parts; the first

part is given by the real and simple eigenvalues (full circle) below E1, the second one is given by
simple eigenvalues with real part larger that E1 and with imaginary part strictly negative (empty
circle).

with a high degree of symmetry, some eigenvalues of −�ω
D might be highly degenerated.

However, this degeneracy is unstable under small perturbations of the domain [26]. In fact, if
the boundary of ω can be Ck− smoothly embedded in R

2 with k > 4, then the eigenvalues En

of −�ω
D are generically simple (see [26]).

Remark 7. In [17, theorem 1] Grushin has obtained a similar asymptotic expansion for the
ground state in mildly twisted tubes with transversal potential. He then proved, under certain
assumptions on ω, the absence of discrete eigenvalues for ε small enough. We would like to
mention that there is one important difference between our result and that of [14, 17]. Assume
that the boundary of ω is sufficiently regular (e.g. C1− smooth) and replace the Dirichlet
boundary condition at ∂� by the Neumann one; let us denote the resulting operator by HV,N

ε

Since V depends only on x, the eigenfunction associated with the lowest eigenvalue of H
V,N
0

will be given by ψ1(x, s) = cϕ1(x), where c is a constant. This follows from the fact that χ1

is constant in the case of Neumann boundary conditions. Consequently we have ∂τψ1 ≡ 0
and therefore, using ψ1 as a test function, we find out that

inf σ
(
HV,N

ε

)
� inf σ

(
H

V,N
0

)
.

This means that, contrary to the Dirichlet case, the lowest eigenvalue of H
V,N
0 will not be

removed by the twisting, even for very small V . On the other hand, the above analysis shows
that the effect on the embedded eigenvalues will typically occur also in the Neumann case,
since the eigenfunctions of H

V,N
0 associated with the embedded eigenvalues are not constant

in s.

5. A concrete model

In the previous section we have seen that the embedded eigenvalues under the influence of
twisting generically turn into resonances. However, theorem 1 does not a priori say that the
imaginary part of the resonances is strictly negative. In this section, we will show on a concrete
model that for mildly twisted waveguides one can guarantee the negativity of the imaginary
part of a chosen resonance.

To make this problem simpler we would like to consider a concrete model, in which V

acts as a Dirac delta potential. However, as the Dirac delta potential is obviously not dilation
analytic, see assumption B, we will approximate it by the sequence

Vν(x) = − ν

2 cosh2(νx)
, ν > 0, (15)

which converges to the delta function at zero as ν → ∞ in the sense of distributions. Moreover,
to be able to give some quantitative results we assume that α(x) = x.
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Proposition 1. Let α(x) = x and assume that the embedded eigenvalue E = E2 + µ1 of the
operator H

Vν

0 is simple and that E2 − E1 > 1
4 . Here Vν is given by (15). Then in the vicinity

of E there is an eigenvalue E(ε, ν) of HVν
ε (θ) with the imaginary part given by

Im E(ε, ν) = −ε2a(ν) + O(ε3), (16)

where

lim
ν→∞ a(ν) = |C1|2

√
E2 − E1 − 1

4

(E2 − E1)2
, C1 = 〈χ1, ∂τχ2〉L2(ω). (17)

In particular, if C1 �= 0 then the coefficient a(ν) is strictly positive for ν large enough.

Remark 8. We note that with this choice of α the essential spectrum of HV
ε (θ) will depend

on ε. This fact is not usual in complex scaling methods; however, this inconvenience does not
affect the existence of the resonances since the correction of the essential spectrum is small
for ε small and thus the non-real eigenvalues of HV

ε (θ) will stay far enough from its essential
spectrum. In fact, it could be possible to avoid this fact by choosing

α(x) = x, ∀x ∈ [−X,X] and α̇(x) = 0, ∀|x| > 2X, (18)

for some X � 1. We note that with this choice of α the essential spectrum of HV
ε (θ) will not

depend on ε and, furthermore, since the wavefunction ϕ1 decays very fast as |x| grows then,
in order to compute (31) and (33), we can practically take α̇ = 1 and α̈ = 0.

Remark 9. Equation (17) implies that if C1 �= 0, then the imaginary part Im E(ε, ν) will be
strictly negative for suitable values of ν end ε. Indeed, first we take ν large enough so that
a(ν) > 0. Then we keep this ν fixed and take ε = ε(ν) small enough so that the remainder
term O(ε3), which also depends on ν, becomes smaller than ε2a(ν). Then

Im E(ε, ν) < 0, (19)

which means that the twisting pushes the eigenvalue E(ε, ν) down in the complex plane,
making thus the lifetime of the corresponding resonance shorter.

Remark 10. Note that the assumption E2 − E1 > 1
4 is made only for the sake of simplicity.

It guarantees that E is an embedded eigenvalue of H
Vν

0 for any positive ν. If E2 − E1 < 1
4 ,

then we would have to consider an eigenvalue Ẽ = Ek + µ1 for some k large enough such that
Ẽ is embedded.

Remark 11. The coefficient C1 depends on the geometry of ω. An integration by parts shows
that C1 = −〈∂τχ1, χ2〉L2(ω). It is therefore easy to see that C1 = 0 for rotationally symmetric
ω. However, it is not a priori guaranteed that C1 �= 0 whenever ω is not rotationally symmetric,
although we are not aware of any counter-example. Let us only mention that C1 �= 0 for certain
domains ω. Indeed, for ω = [0, a] × [0, b] with a > b > 0, we have

χ1(y, z) = 2√
ab

sin
(π

a
y
)

sin
(π

b
z
)

, χ2(y, z) = 2√
ab

sin

(
2π

a
y

)
sin

(π

b
z
)

.

An explicit calculation then shows that

C1 = 〈χ1, ∂τχ2〉L2(ω) = −4b

3a
�= 0.
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5.1. Proof of proposition 1

Equation (16) follows directly from theorem 1. The rest of the proof will be given in two
steps.

Spectrum of hν = −∂2
x + Vν . Following [21, section 23] we set

t = 1

2

[
−1 +

√
1 +

2

ν

]
. (20)

The eigenvalue problem hνϕ̃j = µj ϕ̃j admits solutions

µj = −ν2

4

[
−(2j − 1) +

√
1 +

2

ν

]2

, 1 � j < t + 1 (21)

with associated eigenfunctions

ϕ̃j (x) = (1 − ξ 2)ej /2F
[
ej − t, ej + t + 1, ej + 1, 1

2 (1 − ξ)
]
, (22)

where

ξ = tanh(νx), ej =
√−µj

ν
= 1

2

[
−(2j − 1) +

√
1 +

2

ν

]
, (23)

F denotes the hypergeometric function and ej − t = j − 1. In particular, when ν � 1 then
t ∼ 1

2ν
� 1 and the spectrum of h consists of only one eigenvalue

µ1 = −ν2

4

[
−1 +

√
1 +

2

ν

]2

∼ −1

4
+ O(ν−1) (24)

with the associated normalized eigenvector

ϕ1(x) = ϕ̃1(x)

‖ϕ̃1(x)‖L2(R)

, ϕ̃1(x) = [1 − tanh2(νx)]e1/2. (25)

We recall that the absolute continuous spectrum of the operators

hν = −∂2
x + Vν(x) and h∞ = −∂2

x − δ,

where δ denotes the Dirac’s delta at x = 0, coincides with the positive real axis,

σac(hν) = σac(h∞) = [0, +∞),

and that, see e.g. [1, theorem 3.2.3], hν → h∞ as ν → +∞ in the norm resolvent sense:

lim
ν→∞ ‖rν(ζ ) − r∞(ζ )‖ = 0, Im ζ > 0,

where rν(ζ ) = [ζ − hν]−1 and r∞(ζ ) = [ζ − h∞]−1. Furthermore, making use of the same
arguments as in [1, section 3.2], it follows that for any rapidly decreasing test function ϕ

lim
ν→∞〈ϕ, [rν(ζ ) − r∞(ζ )]ϕ〉L2(R) = 0, Im ζ � 0, (26)

uniformly for ζ belonging to a compact set [a, b] × i[0, c] for any a, b, c > 0.

Computation of the coefficient a. For ν → ∞ we have

σd(hν) = {
µ1 = − 1

4 + O(ν−1)
}
. (27)

We take ν large enough so that for the set � = {E = Ej,n = µj + En} of eigenvalues of H
Vν

0
holds

E1,1 = E1 − 1
4 + O(ν−1) < E1 < E1,2 = E2 − 1

4 + O(ν−1) < E2. (28)
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Then we apply the perturbative theory to the embedded eigenvalue

E = E1,2 = E2 + µ1 (29)

with the associated eigenvector

ψ(x, y, z) = ϕ1(x)χ2(y, z). (30)

In such a case k� = 2 and

Im a2 = − lim
ρ→0+

Im

{ ∑
k=1,2

〈dk, rν(E − Ek − iρ)dk〉L2(R) − ∣∣〈ψ,UVν

ε ψ
〉
L2(�)

∣∣2
(iρ)−1

}
(31)

where rν(ζ ) is the resolvent of hν and

dk(x) = 〈
χk, U

Vν

ε ψ
〉
L2(ω)

. (32)

An integration by parts shows that 〈χ2, ∂τχ2〉L2(ω) = 0. We thus get〈
ψ,UVν

ε ψ
〉
L2(�)

= −2ε〈ϕ1, α̇∂xϕ1〉L2(R)〈χ2, ∂τχ2〉L2(ω) − ε〈ϕ1, α̈ϕ1〉L2(R)〈χ2, ∂τχ2〉L2(ω)

− ε2〈ϕ1, α̇
2ϕ1〉L2(R)

〈
χ2, ∂

2
τ χ2

〉
L2(ω)

= −C0ε
2,

where

C0 = 〈ϕ1, α̇
2ϕ1〉L2(R)

〈
χ2, ∂

2
τ χ2

〉
L2(ω)

= 〈
χ2, ∂

2
τ χ2

〉
L2(ω)

.

Furthermore, from (32) we obtain that

d1(x) = −2εC1∂xϕ1 − ε2C2ϕ1, d2(x) = −ε2C0ϕ1 (33)

where

C1 = 〈χ1, ∂τχ2〉L2(ω) and C2 = 〈
χ1, ∂

2
τ χ2

〉
L2(ω)

.

Collecting all these facts and keeping in mind that E = E2 + µ1 and ϕ1 is the eigenfunction
of hν with eigenvalue µ1 we get, after some tedious, but straightforward calculations, that

lim
ρ→0+

Im
{〈d2, rν(E − E2 − iρ)d2〉L2(R) − ∣∣〈ψ,UVν

ε ψ
〉∣∣2

L2(�)
(iρ)−1

} = 0.

This implies

Im a2 = − lim
ρ→0+

Im〈d1, rν(E − E1 − iρ)d1〉L2(R) (34)

= − lim
ρ→0+

Im[4ε2|C1|2〈∂xϕ1, rν(E − E1 − iρ)∂xϕ1〉] + O(ε3). (35)

We now pass to the limit ν → ∞ which implies

µ1 → − 1
4 , ϕ1 → φ =

√
1
2 e−|x|/2, hν → h∞, (36)

where the last limit is reached in the norm resolvent sense. We recall also that the resolvent
[ζ − h∞]−1 has the kernel given by

Kζ (x, x ′) = K0
ζ (x, x ′) + K1

ζ (x, x ′),

where

K0
ζ (x, x ′) = 1

2ki
eik|x−x ′ |, K1

ζ (x, x ′) = − 1

2k

1

2k + i
eik[|x|+|x ′ |], ζ = k2, Im k > 0

(see [1]). In our case

ζ = k2 = E − E1 − iρ = E2 − E1 + µ1 − iρ. (37)
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We will denote by K0
ζ and K1

ζ the integral operators with the kernels K0
ζ (x, x ′) and K1

ζ (x, x ′),
respectively. Note that ∂xϕ1(x) is an odd function, which implies that K1

ζ ∂xϕ1 ≡ 0. Now
hν → h∞ as in (26). Since E − E1 is not an eigenvalue of hν for any ν large enough (in fact
E − E1 belongs to the absolute continuous spectrum of the operators hν and h∞) and d1 is
an exponentially decreasing function as |x| → ∞, we can pass to the limit ν → ∞ replacing
rν(E − E1 − iρ) on the rhs of (34) by K0

ζ and ϕ1 by φ:

lim
ν→∞ Im a2 = − lim

ν→∞ lim
ρ→0+

Im〈d1, rν(E − E1 − iρ)d1〉L2(R)

= − lim
ρ→0+

Im[4ε2|C1|2〈∂xφ, r∞(E − E1 − iρ)∂xφ〉] + O(ε3), (38)

where the remainder term is uniform with respect to ρ. An explicit computation then gives

lim
ρ→0+

Im
〈
∂xφ,K0

ζ ∂xφ
〉 = 4

√
E2 − E1 + µ1

[1 + 4(E2 − E1 + µ1)]2
. (39)

In view of (36) and (39) we get

lim
ν→∞ Im a2 = −ε2|C1|2

√
E2 − E1 − 1

4

(E2 − E1)2
.

The proof is complete.
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